1-73. See below.

a.
$$x^{11}$$

c.
$$m^{12}$$

d.
$$x^8y^8$$

e.
$$x^3y^8$$

f.
$$\frac{1}{4}x^{10}$$
 or $\frac{x^{10}}{4}$

1-75. See below.

a.
$$\frac{1}{x} = x^{4-5} = x^{-1}$$

b.
$$\frac{1}{x^2} = x^{2-4} = x^{-2}$$

c.
$$\frac{1}{x^3} = x^{7-10} = x^{-3}$$

1-74. See below.

	Expression	Generalization	Why is this true?
a.	$x^{25} \cdot x^{40} = ? [x^{65}]$	$x^m \cdot x^n = ? [x^{m+n}]$	If you have $m x$'s and $n x$'s multiplied together, you then have a product of $(m + n) x$'s.
b.	$\frac{x^{36}}{x^{13}} = ? [x^{23}]$	$\frac{x^m}{x^n} = ? [x^{m-n}]$	Many of the x's in the numerator and denominator make "1s," leaving (m - n) x's.
c.	$(x^5)^{12} = ? [x^{60}]$	$(x^m)^n = ? [x^{mn}]$	If you have n sets of m x's, then you have mn x's.

1-76. The value of $\frac{x^m}{x^m}$ is 1 because any number divided by itself is 1. It can also be rewritten as x^{m-m} . Thus $x^0 = 1$ (assuming $x \neq 0$).

1-77. See below.

a.
$$\frac{3y}{5x^3}$$

b.
$$\frac{10x}{y}$$

c.
$$\frac{x}{3}$$

1-78. $\frac{1.06\times10^7}{1.4\times10^{-1}} \approx 7.6 \times 10^7$. See the "Suggested Lesson Activity".

1-81. See below.

- a. $\frac{1}{4}$
- b. 1
- c. $\frac{1}{5^2} = \frac{1}{25}$
- d. $\frac{1}{x^2}$

1-82. See below.

- a. 2
- b. 53

1-83. See below.

- (a) and (b) are functions because each only has one output for each input.
- d. a: D: all real numbers, R: $1 \le y \le 3$;
 - b: D: all real numbers, R: $y \ge 0$;
 - c: D: $x \ge -2$, R: all real numbers

1-84. See below.

- a. 1.6×10^8
- b. 5.8413×10^{10}
- **1-85.** The unshaded triangle is half the area of the rectangle $(0.5(8)(17) = 68 \text{ in}^2)$, so the shaded area is the other half.